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Abstract We use particle filtering for correcting the erroneous Motion Vec-
tors (MVs) which are derived from the Boundary Matching Algorithm (BMA)
in packet video communications. Assuming a two-state Markov channel model
for transmission, the error of the extracted MVs by BMA is shown to be mod-
eled by the Gaussian Mixture (GM) distribution. Formulating the problem in
the state-space, we deploy particle filtering for denoising the erroneous MVs.
The main challenge of using particle filters is high computational complex-
ity that is directly related to the number of particles. The proposed particle
filtering scheme is efficient even if the number of particles is decreased. Exper-
imental results are provided to show the efficiency of this filtering approach
compared to a recent scheme based on Kalman filtering. The experiments show
meaningful increase in the quality of the recovered video sequences in terms of
PSNR up to 3 dB compared with the other error concealment (EC) techniques.
Also, the computational complexity of the proposed scheme is discussed.

Keywords video error concealment · particle filtering · non-linear filtering ·
Mont Carlo (MC) filtering · non-Gaussian filtering

1 Introduction

In recent years, the growth of wireless technologies has led to the popularity
of video services on mobile devices. Unfortunately, the wireless channels are
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unreliable for video signal transmission, especially for compressed videos. Ad-
vanced video coding standards such as H.263, and H.264 are highly compressed
and applicable in interactive communications which is mostly due to the recent
motion compensation techniques. For example A. Almuhit et al. proposed a
novel elastic motion model based on elastic image registration with 2-D co-
sine basis function [1]. Due to the high compression rate, a few errors in the
video bit stream may lead to severe problems in decoding process. On the
other hand, the motion compensated prediction which is used for increasing
the compression rate of video data causes the errors to be propagated through
the subsequent frames at the decoder side.

To alleviate this problem, error resilience and error concealment (EC) tech-
niques have been proposed. The former makes the coded videos more inde-
structible against transmission errors while the latter attempts to conceal and
recover the erroneous parts of the frames deploying the correctly received in-
formation [2, 3].

Several strategies have been proposed for error resilient techniques in [2,4].
One approach is using feedback mechanism. This can be achieved for example
by automatic retransmission request (ARQ) which uses the rate distortion
of the transmission line function to select the inter or intra-coding mode [5].
Although these methods are efficient ways of protecting the video data from
channel errors, they add more delay to the data decoding time which makes
it unusable for many interactive applications.

Another approach is using the forward error correction (FEC) method.
In this method, the decoder can recover the errors by using the redundant
information, for example the error correction or other types of codes, which
are inserted among the compressed video signals at the encoder side [6, 7, 8,
9]. Although error resilience techniques make video codecs more robust, they
decrease the efficiency of the video coding and increase the bit rate of the
transmitted video which eventually limit its applications.

EC techniques attempt to recover erroneous parts of a video frame using
the correctly received data at the decoder side. These techniques have made
use of the spatially and/or temporally adjacent Macroblocks’ (MBs) pixels
information at the decoder side regardless of making any changes in the chan-
nel or source codes [10, 11]. In spatial methods, the neighboring pixels are
used to interpolate the missed coefficients in the same erroneous frame. On
the other hand, temporal methods exploit the correlation between consecutive
frames. The challenging part in temporal approaches is to recover motion vec-
tors (MVs) of the erroneous MBs. Therefore, various schemes are proposed to
recover the MVs. For instance they can be estimated by zero MV technique,
easily, i.e., by replacing the erroneous MB with the one at the same position in
previous frame. Moreover, the MV of the erroneous MBs can be recovered by
more sophisticated techniques which are discussed in [12,13,14]. For example,
Hrusovsky et al. proposed an algorithm using statistical distribution of the
corrupted motion information. The distribution is derived from the damaged
video sequence and then the MVs are refined deploying a Particle Filter based
approach [15]. Also the erroneous MB can be recovered using Boundary Match-
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ing Algorithm (BMA). To enhance this technique several methods have been
proposed. Authors in [16] proposed a novel correlation based enhancement al-
gorithm to improve the accuracy of the MVs which are derived using BMA.
Another highly considered approach to this problem is developed by Chen et

al. in [17]. The authors in the mentioned paper have proposed a BMA-based
algorithm using spatio-temporal correlation (STBMA) and found the best re-
placing MB in the reference frame. Then they have used a PDE-based method
to refine the lost pixels. In order to apply this stage they have minimized the
weighted difference between the gradient of the lost MB and the recovered one
which is derived from the STBMA method in the first stage. Their method
reduce the blocking artifact and recover the missing MB effectively. However
due to the the high dependency to spatio-temporal correlation their proposed
method will be less effective in sequences with high non-uniform MVs. In this
paper we propose a novel particle filter based method which exploits a non-
linear non-Gaussian model that can deal with non-uniform systems effectively.

Also several filtering techniques are proposed to enhance the recovered
MVs. For example in [18] authors try to use Kalman filter after MV restora-
tion. They use edge strength and intensity reliability to restore the pixel values.
In addition, there are also other sophisticated algorithms which can estimate
the erroneous MV in a better way. For instance, Lie and Gao [19] proposed a
dynamic-programming-based technique to evaluate the performance of bound-
ary matching and side smoothness of recovered MB which is enhanced with
adaptive Kalman filtering algorithm. More recently other algorithms are in-
troduced using both temporal and spatial methods together [20, 21]. For in-
stance, an autoregressive model is developed by Yongbing Zhang et al. for
EC in block-based packet video coding which uses both spatial and temporal
information [20].

In this paper we develop a novel Particle Filter (PF) based algorithm to
conceal the missing MB. First, the estimation of the MVs of the corrupted MB
is obtained using BMA. Next, a non-Gaussian/non-linear model is developed
which is used for deploying the filtering algorithm. However, the high com-
plexity of PF limits its application. Therefore, we consider several constraints
in the proposed filtering method to balance the accuracy of the recovered MVs
and the required computational complexity. The rest of this paper is organized
as follows. In section II, filtering scheme for EC is presented. Section III, is
devoted to the problem statement and notations. In section IV, we investi-
gate usage of particle filtering for MV recovery. In section V, the proposed
algorithm is discussed and several practical considerations are investigated.
Section VI is devoted to the simulation results that are compared with similar
schemes in terms of peak signal-to-noise ratio (PSNR) and processing time.
Finally in section VII, we make the concluding remarks.
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2 Filtering Schemes for Error Concealment

The video data packets are transmitted through slices in MPEG-x or GOBs
in H.26x standard. Sometimes, packets are lost or corrupted which causes the
decoder to decode MBs erroneously. One of the major problems in concealment
of these erroneous MBs is finding the most suitable MVs for them by using
the correctly received data at the decoder side. If one estimates these MVs
correctly, the erroneous MBs can be replaced by the closest ones from the
previous frame. A well-known technique which is used to estimate these MVs
by using the information of the previous frame, is BMA. In this method,
the MV of the corrupted MB is restored based on the MV information at
the nearest neighbors of the erroneous MB in the current frame [22]. This
information can help us to find the best displacement of the erroneous MB
in the previous frame. It leads to finding an estimated MV for the corrupted
MB. This scheme is investigated further in section III.

In some cases, the channel error leads to severe degradation in several
consecutive MBs. Hence the erroneous parts of the frames are concealed using
one of the EC techniques. To mitigate this problem, filtering techniques are
introduced to modify these MVs and make them more appropriate for the
recovery of the erroneous MBs. The objective is to iteratively exploit the MVs
of the adjacent MBs in the current frame and their corresponding information
in the previous frames. Then, by applying an estimation technique, the filtering
scheme finds the best matching MV for the erroneous MB. According to our
knowledge, video EC techniques based on Kalman Filter (KF) are widely used
in literature and different approaches are proposed to obtain the best EC
method. A brief overview of the EC based on KF and its severe problems are
investigated in section II, further.

2.1 Kalman Filtering for MV Recovery

In [23] KF is applied on the extracted MVs of the adjacent MBs in the current
frame and previous ones which are derived from BMA for fine tuning. Note
that abbreviation and variables used throughout this paper are written in table
I and table II, respectively.

Let Xt and Xt−1 denote the MVs of the erroneous MB in the tth and
(t− 1)th estimation states, respectively. Assume Yt denotes the observed MV
of the erroneous MB in the tth estimation state. Also, Vt and Ut denote the
observation noise and process noise, respectively. The state and observation
models are given by (1) and (2), respectively.

Xt = AXt−1 + Ut (1)

Yt = BXt + Vt (2)

where A and B are the state transition and measurement matrices, respec-
tively.
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These matrices are determined by using the correctly received MVs and
the Least Square Error (LSE) method in each frame [23]. Then, the observed
noisy MV of the erroneous MB is applied in (1) and (2) to find the best
representative MV as the state.

Experimental results show that the quality improvement by about 0.5 ∼
0.72 dB is achieved in PSNR using this filtering technique [23].

2.2 Motivation for Particle Filtering

The two major assumptions of Kalman filtering are linearity and Gaussianity.
That is the dynamic state and observation model in (1) and (2) are linear. A

and B are estimated for each frame specifically. When a frame consists of the
objects with different motion speeds and directions, there is inaccuracy in MV
recovery since these matrices are estimated using LSE which is inaccurate.

To illustrate the problem visually, we consider two different frames for
the 14th and 54th frames of the “Suzie” video sequence. Assuming a given
channel error model in Fig. 1(a) to (d) the erroneous and the corresponding
reconstructed frames by deploying Kalman filtering are depicted. The results
show good performance for MV recovery on the 14th frame than the 54th one
since it has more uniform MVs. Also Fig. 2(a) and (b) shows the recovered
MVs of the 14th and 54th frames, respectively. While the MVs of the 14th

frame are more uniform and almost zero in most parts of the frame, the MVs
of the 54th frame have different directions and amplitudes. Therefore, A in (1)
is better estimated for the 14th frame since the error of LSE in estimation is
smaller. In fact, the frame that has more uniform MVs will have smaller error
in estimating A and leads to better MV approximation.

This discussion shows that assuming linearity for this system is not always
accurate and cause severe degradation in video quality especially when the
MVs of the erroneous MBs are not uniform in a frame. On the other hand,
Gaussianity is another limitation of Kalman filtering, i.e., it cannot handle
non-Gaussian observation and process noises which can not be modeled by a
Gaussian PDF.

In Kalman filtering, the observation noise of the extracted MVs from the
BMA method is assumed to have Gaussian distribution. However, in following
we argue that the observation noise of the BMA is better modeled by a GM
distribution.

We set up an experiment in which the MVs for two different sequences
are extracted by the BMA method as noisy measurements. Let δx and δy

be the error values of the recovered MVs using BMA in x and y directions,
respectively. The estimation of errors Probability Density Functions (PDF) is
derived based on the normal kernel function and the density is measured at
100 equally spaced points that cover the range of δx and δy.

In Figs. 3 and 4, the PDF for “Carphone” and “Suzie” sequences are de-
picted, respectively. In this experiment, for “Suzie” sequence, the Packet Loss
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Rate (PLR) is 15% and the Quantization Parameter (QP) is set to 20 and for
“Carphone” sequence the PLR and QP is 5 and 25, respectively.

The PDFs which are shown in both of these two figures are obviously non-
Gaussian. We consider a GM model as an alternative. Therefore, these PDFs
are better approximated by a mixture of Gaussians.

Figs. 5 and 6 show the errors between the d-component GM approximated
PDFs and the original one in the sense of Sum of Square Error (SSE) where d is
the number of Gaussian components in GM model. These figures show that the
SSE is decreased when the number of GM components are increased. That is,
the system observation noise is more exactly modeled by the GM distribution.
In other words, increasing d leads to better modeling of the system at the
cost of adding more complexity to it which makes it less efficient in interactive
communications.

Since particle filtering scheme is not restricted to linear and Gaussian sys-
tems, we are motivated to use this technique for video error concealment and
MV recovery.

3 Problem Statement and Notations

A MV is considered as a pair of two independent elements in x and y directions.
The MV for (m, n)th MB in x and y directions is denoted by xk,x(m, n) and
xk,y(m, n) in kth frame, respectively. Let Ii,j(m, n, k) be the (i, j)th pixel at
(m, n)th MB in kth frame where i ∈ {0, 1, 2, . . . , 15} and j ∈ {0, 1, 2, . . . , 15}.

The packet network channel can be modeled by a Markovian two-state
Elliot-Gilbert model [24]. As it is depicted in Fig. 7, when the channel is in
bad state the packet is received erroneously and the decoder considers it as
lost. This model is run for each packet and the average time the model stays
at the bad state is considered as PLR. The PLR for this model is given by

PLR =
a

a + b
(3)

where a and b are the channel state transition probabilities. When PLR
increases, the number of erroneous slices increases and the video quality de-
grades drastically.

A new dynamic system model is proposed to find better MVs for concealing
the errors. We use this model to enhance the MVs by filtering. In the state-
space the system model can be formulated by

Xnew
t = ht(X

old
t ,Ut) (4)

Yt = gt(X
new
t ,Vt) (5)

where Xold
t is the prior state vector of the MV of the considered MB and

Ut is the process noise vector which can be non-Gaussian. ht is a function
which can be non-linear and varies for each frame. Also gt is the observation
function and it can be non-linear, too. Vt is the observation noise vector. For
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the sake of simplicity Xnew
t is denoted as Xt and Xold

t is denoted as X1:t−1.
Therefore, (4) and (5) can be simplified to (6) and (7).

Xt = h(X1:t−1,Ut) (6)

Yt = g(Xt,Vt) (7)

The block diagram of the proposed filtering scheme for error concealment
is depicted in Fig. 8. As it is shown in this figure, X1:t−1 is the prior states of
Xt, that is, it can be derived through t−1 previous states. In order to develop
a probabilistic model, two ideas are deployed. First, we propose the set S
such that its components are chosen from the MVs of the nearest adjacent
neighbors of corrupted MB. It is added as an additional step before applying
the filtering and is given by

S = {xi,j(m, n)|i ∈ [−1, 1], j ∈ [−1, 1], (i, j) 6= (0, 0)} (8)

where xi,j(m, n) is the MV that is located in (m + i, n + j)th position and
x0,0 is the MV of the corrupted MB in the middle of these 8 neighboring MBs.
The components of S are considered as the initial states of Xt. To decrease
the complexity the set S should be made before deploying the particle filter.
It is depicted in Fig. 8. Note that the number of components of S depends on
the region of the frame where the erroneous MB is located and the measure of
simplicity that one will achieve. If the neighboring MVs are lost in the current
frame, one can exploit the adjacent MVs at the same place in the previous
frame. Second, we assume a GM PDF for the system in order to develop an
efficient system model and particle filters can deal with GM models effectively.
It is beneficial especially when the system is non-linear and non-Gaussian. In
order to benefit from this scheme, a d-component GM posterior probability
for the current state Xt is considered in (9).

p(Xt | X1:t−1) =
∑
l∈d

λlN(µl, σl) (9)

where σl and µl are mean and variance of the lth GM distribution, respec-
tively, and λl is its mixing density. We assume that mixing densities are equal
and h is a function that selects a component from the set S, randomly, hence,
(6) can be simplified to (10).

Xt = h(X1:t−1) + Ut (10)

Note that the particle filters have the ability to correct both prediction
and measurement noises, efficiently. In other words, the selected component
by h will be predicted and corrected iteratively using the filtering technique
and the error will be minimized in several iterations [25, 26].

The observation in the proposed scheme is obtained through the BMA
method. Its function is denoted by g(.) in (7). As a matter of fact, it locates the
best displacement of the (m, n)th MB in the target frame through the reference
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frame. The best displacement is achieved when the sum of squared difference
between the surrounding top, bottom, and left lines of the neighboring MBs
is minimized. Let MVx and MVy denote the components of the recovered MV
by the BMA method which is given in (11).

(MVx, MVy) = (i′ − i, j′ − j) (11)

where i and j are the pixel indexes of the considered MB and i′ and j′ are
displaced i and j. As it is discussed in section II, these MVs are considered as
noisy observations since the error values for MVx and MVy are unpredictable.
Considering Vt as the GM distributed observation noise vector (7) can be
simplified to (12).

Yt = g(Ii′,j′(m, n, k − 1), Ii,j(m, n, k),Xt) + Vt (12)

where Ii′ ,j′(m, n, k) and Ii,j(m, n, k) are pixel information for (m, n)th MB.

4 Particle Filtering for MV Recovery

4.1 Basics of Particle Filtering

Particle filters can estimate the states of non-linear/non-Gaussian systems
effectively. It is a Bayesian sequential importance sampling method which re-
cursively approximates the posterior distribution [27,28]. Suppose the system
is modeled by a Markov process which its initial distribution probability is de-
noted by p(x0) and has a transition equation which is given by p(xt | x1:t−1).
Also, the hidden states of the system are denoted by xt where t ∈ {1, 2, . . . , T}
and xt ∈ X where X is the set of all system states and T is the number of the
states. The observations are denoted by yt where t ∈ {1, 2, . . . , T ∗} and T ∗ is
the number of observations and yt ∈ Y where Y is the set of all the observa-
tions which are assumed to be conditionally independent. Given observations
y1:t−1 = {y1, . . . , yt−1} up to time t − 1, the posterior distribution at time t

can be derived using (13)

p(xt | y1:t−1) =

∫
p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1 (13)

Since observation yt is available at time t and considering Markov model,
the state can be updated using Bayes’ rule which is written in (14)

p(xt | y1:t) =
p(yt | xt)p(xt | y1:t−1)∫
p(yt | xt)p(xt | y1:t−1)dxt

(14)

Equations (13) and (14) are prediction and updating steps for particle
filtering, respectively.

Since it is usually impossible to sample efficiently from the posterior dis-
tribution p(xt | y1:t) at any time t, alternative methods have been proposed in
order to relieve this problem [28]. On helpful technique to solve this problem
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is called Importance Sampling (IS). However, this method is not applicable
for recursive estimation which is explained specifically in [27,28,29,30]. There-
fore, we use another technique which is called Sequential Importance Sampling
(SIS) [27]. This technique is a recursive version of IS and can approximate the
posterior distribution p(xt | y0:t) by a weighted set of particles which are de-

noted by w
(i)
t . In other words, the weight of the ith particle in tth state is

denoted by {w
(i)
t , x

(i)
t }N

i=1 for N particles which is calculated by (15) recur-
sively.

w̃
(i)
t ∝ w̃

(i)
t−1

p(yt | x
(i)
t )p(x

(i)
t | x

(i)
t−1)

π(x
(i)
t | x

(i)
0:t−1, y1:t)

(15)

where w̃
(i)
t is the normalized importance weight for the ith particle and

π(x
(i)
t | x

(i)
0:t−1, y1:t) is the importance density at time t. By assuming(16), the

equation (15) can be simplified to (17).

π(x
(i)
t | x

(i)
0:t−1, y1:t) = p(x

(i)
t | x

(i)
t−1) (16)

w̃
(i)
t ∝ w̃

(i)
t−1p(yt | x

(i)
t ) (17)

Obviously, one can evaluate importance weights for each particle by (17),
recursively. These weights require the particles to be propagated through time
before they are being calculated. This choice is easily implemented and up-

dated using the measurement likelihood p(yt | x
(i)
t ) for the sampled particles.

In other words if one initializes the particles’ weight, i.e., w
(i)
0 , then w

(i)
t can

be updated using p(yt | x
(i)
t ), accordingly.

SIS is an attractive method. Unfortunately, it does not guarantee to con-

verge as time proceeds and the distribution of the normalized weights w̃
(i)
t

would be more distorted as t is increasing. Therefore, only one particle has
a non-zero weight when time proceeds and the algorithm fails to represent
the posterior distributions, sufficiently [28]. In other words, it is not practical
for recursive estimation of the hidden states because the complexity of this
method is increasing with time due to estimating the posterior distribution,
i.e., p(x0:t | y1:t), that have nearly zero weights. An appropriate measurement
to solve the degeneracy problem is using the effective sample size Neff which
is given in (18).

N̂eff =
1∑N

i=1 w̃
(i)
t

(18)

when N̂eff is below a fixed threshold Nthres, the particles are resampled
[27]. To overcome this problem two ideas are applied:

1)Eliminating particles that have small normalized importance weights.
2)Multiplying particles which have large weights.
By adding these ideas, a resampling step will be added to the SIS method

which is used for obtaining a new set of particles and weights [31]. Also this
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method is modular, very quick and easy to implement. One important property
of these filters is that they can be implemented on the hardware and parallel
computers which can make them useful for more interactive applications [27,
28, 32].

4.2 Application of Particle Filtering for MV Recovery

Let X
(i)
t (m, n) be the MV of the ith particle at the current state, i.e., t, for

(m, n)th MB at the decoder side where (m, n) is the coordinate in terms of
(row, column). The state vector model is given by (19). It consists of x and y

components of the considered MV which are assumed to be independent.

Xt = (x
(i)
t,x, x

(i)
t,y) (19)

The diagram in Fig. 9 illustrates the proposed method. Using (10) and
(19), the update equation is formulated in (20).

x
(i)
t,x(m, n) = x

(i)
t−1,x(m, n) + ut,x (20)

x
(i)
t,y(m, n) = x

(i)
t−1,y(m, n) + ut,x

where ut,x and ut,y are the process noise terms in x and y directions,
respectively. They are supposed to have GM distribution with zero mean where
their covariance values are set to be equal.

For modeling the observations, we consider (12) as the observation model.
Therefore, Yt, i.e., the observed value, can be derived for tth state. Horizontal

and vertical components of the observed MV are denoted by [y
(i)
t,x(m, n), y

(i)
t,y(m, n)]

in x and y directions for ith particle at the tth state.
The particles’ weights are calculated based on the similarity between Xt

and Yt using the Euclidian distance between them which are formulated in
(21) and (22)

f(x
(i)
t,x, yt,x) = [

N∑
i=1

(x
(i)
t,x − yt,x)2]

1
2 (21)

f(x
(i)
t,y, yt,y) = [

N∑
i=1

(x
(i)
t,y − yt,y)

2]
1
2 (22)

The measurement likelihood of the particles are achieved by

p(yt,x | x
(i)
t,x) = N(f(x

(i)
t,x, yt,x)2, 0, 1) (23)

p(yt,y | x
(i)
t,y) = N(f(x

(i)
t,y, yt,y)2, 0, 1) (24)

Therefore the particles’ weight are calculated by

10



w
(i)
t,x = w

(i)
t−1,x × p(yt,x | x

(i)
t ) (25)

w
(i)
t,y = w

(i)
t−1,y × p(yt,y | x

(i)
t ) (26)

After the particles’ weight derived using (25) and (26) one can easily es-
timate the parameters of the state by taking expectation of the state with
respect to their weights by

x̂t,x = E{xt,x} (27)

x̂t,y = E{xt,y} (28)

Also in order to avoid the degeneracy problem, which is discussed in section
4.1, Neff is calculated and if it is below Nthres, new states and corresponding
weights are generated using Algorithm 2.

5 The Proposed Scheme and the Algorithm

5.1 The Implementation of the Proposed Scheme

The particle filtering procedure is described briefly in this section. For the

sake of simplicity, we denote x
(i)
t,x(m, n) or x

(i)
t,y(m, n) as x

(i)
t and w

(i)
t,x(m, n) or

w
(i)
t,y(m, n) as w

(i)
t . Also it is assumed that the pth MB is missed in the current

erroneous slice. The algorithm has to be performed on each corrupted MB
within an erroneous slice. We explain the proposed particle-filter-based error
concealment method in the following steps which are depicted in Fig. 9.

Step 1) Error Detection: The corrupted slices/GOBs at the decoder side
are identified.

Step 2) Build the set S by using (8)
Step 3) Initialize with N random particles that are drawn from the set S

where its elements are uniformly distributed and set the corresponding weights

equal, i.e, w
(i)
0 = 1

N

Step 4) Obtain the observation using BMA
Step 5) Particle filtering is applied by Algorithm 1 for pth MB in the

erroneous slice and the candidate MV, i.e, x̂t, is estimated for tth state.
Step 6) Resample the particles of the tth state if Neff < Nthres by using

Algorithm 2.
The pseudo-code of these steps are illustrated in Algorithm 1 where M is

the number of erroneous MBs in the erroneous slice and N is the number of the
particles. e is the index of the detected erroneous MB and i is the index of the
particle. The resampling step is added to the Algorithm 1 which is illustrated

in the Algorithm 2. In this algorithm W
(i)
t is Cumulative Distribution Function

(CDF) and j(i) is the resampled particles.
In the pseudo-code for the resampling step, x̃i

t is the particles’ state before
resampling. Also j(i) is the resampled index [28, 32].

11



Algorithm 1 Particle-filter-based Error concealment algorithm

for e = 1 to M do

build the set S
for i = 1 to N do

draw xi
0 from S

calculate wi
0 = 1/N

end for

for i = 1 to N do

predict next state of the particles by x
(i)
t+1 = x

(i)
t + ut

evaluate the particles likelihood by p(yt | x
(i)
t ) using (23) and (24)

calculate the weights by w
(i)
t = w

(i)
t−1 × p(yt | x

(i)
t )

calculate the summation of all weights by S =
∑N

i=0 w
(i)
t

normalize all the weights by w̃
(i)
t =

w
(i)
t

S
estimate the MV’s state x̂ = E{xt}
apply resampling step by using Algorithm 2

end for

end for

Algorithm 2 Resampling

calculate N̂eff by N̂eff = 1∑
N

i=0
w̃i

t

if N̂eff ≥ Nthres then

set xi
t = x̃i

t

else

calculate the cumulative distribution function (cdf) W
(i)
t of the weight w

(i)
t

for i = 1 to N do

draw n independent uniforms {U i}1≤i≤n on the interval (0,1).

look for the minimum j(i) that satisfies W
j(i)
t ≥ n.

end for

end if

for i = 1 to N do

Set xi
t = x̃

j(i)
t

Set wi
t = 1

N
end for
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5.2 Practical Considerations

Computational complexity is an important issue in using particle filters. This
problem arises drastically when the number of particles increases. To address
this issue, let the number of particles be denoted by N and the number of
the erroneous MBs in a frame by M . Also, we consider n elements in the set
S. Since there are two simultaneous calculations for the considered MVs in x

and y directions, we calculate the computations for one direction, then it is
doubled to achieve all of the calculations.

In the initialization phase, N samples are drawn from a uniform distribu-
tion from the set S. In particle filtering, there are four parts. Prediction part
needs 1 additions which is repeated N times. In evaluation part there are 2
additions and one Gaussian PDF calculation for finding the likelihood which
is repeated N times. There is N divisions in normalization part. If resampling
is used in filtering, there are N multiplications and N additions and one di-
vision which is for finding Neff . Also resampling part needs N table lookups
to draw from the uniform distribution and N × N Comparisons. There is a
possibility that resampling algorithm can be implemented in O(N) operations
by using the techniques which are mentioned in [27]. The main reason for low
number of particles is the novel idea of using the set S. In other words, choos-
ing the initial state for PF from the set S leads to a faster convergence and a
significant reduction in complexity [28].

6 Experimental Results

The proposed method is evaluated using the standard H.264/AVC codec and
examined on CIF(352×288 pixels) and QCIF (176×144 pixels) video sequences
which contained 150 frames. The simulations were run on a Pentium-4, 2 GHz
core 2 duo CPU personal computer with Microsoft Windows 7 operating sys-
tem. The experiments are performed using MATLAB software. It is coded at
30 frame/sec and the coding structure is “IPPP”. Note that the Quantization
Parameter (QP) is 25 and kept consistent along the whole frames. We have
tested the method on different kinds of standard frames such as “Stefan”,
“Tennis”, “Suzie”, “Container”, “Foreman” and “Carphone”. Based on exten-
sive simulations we found that 3-component mixture model leads to the best
subjective and objective results and hence d sets 3 in the whole experiments.
The PSNR is calculated between two video sequences by (29)

PSNR = 10 log10(
B2

MSE
) (29)

where B is the largest possible value of the signal which is 255 in our
experiment and MSE is the Mean Square Error difference between two frames.
We calculate it for Y component of each frame and denote it as YPSNR in
decibel unit.
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For comparison several typical EC methods are implemented. The first one
is BMA. In this method the erroneous MB is replace with the most similar
one in the previous frame [22]. Another EC algorithms are the DMVE [33] and
the proposed particle-filter-based algorithm which is evaluated with one of the
most recent Kalman filter based EC methods [34]. This method is denoted as
“KF”. Also the proposed algorithm is denoted as “PF”.

Table III shows the average YPSNR for 150 frames of the “Stefan”, “Fore-
man”, “Tennis” and “Carphone” sequences. In this test YPSNR and the
needed time to process the considered EC method are evaluated. The par-
ticle number is 100 in this test. The needed time using the PF and the KF is
more than BMA since they are post processing applied to the BMA. The pro-
posed algorithm shows better performance than the other methods. Detailed
results are given in this table. The KF method degrades the quality of the
“Stefan” sequence for some PLR values since KF suffers from linearity and
Gaussianity constraints which are discussed in section II. These results show
the superiority of the proposed algorithm than other considered methods.

In Fig. 10, YPSNR is evaluated for each frame of the “Foreman” sequence.
This sequence has QCIF resolution (176 × 144) and the PLR is 20% in this
experiment. The proposed algorithm seems to be superior to the other methods
in most of the frames which is reflected in YPSNR values.

The results in Fig. 11 show better subjective quality for the proposed tech-
niques than other methods. It is tested on 4th frame of the “Stefan” sequence
with QCIF resolution and the background text, fans, texture and the edges
are restored better in (f).

Fig. 12 compares other techniques versus the proposed one. It is tested
on 2nd frame of the “Foreman” sequence with CIF resolution. The displaying
concealment is superior in most of the erroneous parts include the hat, lips
and most parts of the face.

Figs. 13 and 14 illustrate the comparison among BMA, DMVE, KF and
the proposed algorithm for two other types of error patterns. The PLR is
assumed to be 25%. Fig. 13 is 10th frame of the “Stefan” sequence with QCIF
resolution. The proposed concealment technique recovers the missing MBs
with less blocking artifacts and the straight lines are restored better. Fig. 14
is 7th frame of the “Foreman” sequence with QCIF resolution. The recovered
frame obtain better visual quality specifically around the nose and ear parts
of the face.

To summarized this paper, we have highlighted the main points of the
proposed technique. We are motivated to use particle filtering as a fine tuning
process to overcome the inefficiency of the BMA algorithm which is due to
the lack of information for MV recovery. Also one of the Kalman filtering
technique is investigated and its inefficiency due to linearity and Gaussianity
constraints is discussed in detail. In the proposed scheme, a new system model
is developed which is non-linear and non-Gaussian. In addition error PDF of
the BMA is investigated and a novel GM model is developed. This model is
used for particle filtering and the problem of high complexity is solved using
the set S which is useful for the algorithm to converge faster. Unfortunately
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MVs in H.264/AVC do not always recovered correctly and the post processing
techniques seem to be necessary.

7 Conclusion and Discussion

In this paper, we have deployed particle filtering algorithm for concealing the
erroneous MBs which are received in the decoder side. An efficient system
model and importance weight function were developed to maintain an effec-
tive particle-filter-based framework for erroneous MV recovery. Also the up-
date formulation is proposed based on the GM and several new parameters
are used to develop this novel particle-filter-based EC technique. Experiments
have shown that using particle filters for MV recovery in the way which is
discussed in this paper can increase the quality of videos up to about 3 dB in
YPSNR. Besides, this EC scheme can open up a new path for using filtering
techniques in video EC. For further investigation we recommend using other
optimization algorithms to enhance the accuracy of the particle filters. It has
a great potential in obtaining a high performance for video EC. The results
have shown that the proposed particle filtering method is a useful tool for
recovering the erroneous MBs effectively.
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Table 1 ABBREVIATIONS USED THROUGHOUT THIS PAPER

abbreviation definition
EC Error Concealment

ARQ Automating Retransmission Request
FEC Forward Error Correction
MB Macroblock
MV Motion Vector
KF Kalman Filter

DMVE Decoder Motion Vector Estimation
PSNR Peak Signal to Noise Ratio
GOB Group Of Blocks
LSE Least Square Error
PDF Probability Density Function
SSE Sum of Square Error
QP Quantization Parameter
PLR Packet Loss Rate
IS Importance Sampling
SIS Sequential Importance Sampling
MC Monte Carlo
MSE Mean Square Error
CDF Cumulative Distribution Function
BMA Boundary Matching Algorithm
GM Gaussian Mixture

17



Table 2 VARIABLES USED THROUGHOUT THIS PAPER

variables definition

Xt tth motion vector state
t current state
A state transition matrix
B measurement matrix
Ut process noise for tth state
Vt observation noise for tth state
Yt observed motion vector for tth state
δx error value of the x component of the recovered motion vector using BMA in kth frame
δy error value of the y component of the recovered motion vector using BMA in kth frame

xk,x(m, n) The x component of the motion vector for (m, n)th macroblock
xk,y(m, n) The y component of the motion vector for (m, n)th macroblock
Ii,j(m, n, k) (i, j)th pixel value at (m, n)th macroblock in kth frame

Xnew
t current state vector of the motion vector

Xold
t prior state vector of the motion vector

X̂t estimated motion vector for tth state
σl variance of the lth Gaussian component of the Gaussian mixture
µl mean of the lth Gaussian component of the Gaussian mixture
λl mixing density

MVx x component of the recovered motion vector using BMA
MVy y component of the recovered motion vector using BMA

m x index of the considered macroblock
n y index of the considered macroblock

i(i′) displacement value of the macroblock in x direction
j(j′) displacement value of the macroblock in y direction

k frame number
T number of states
T ∗ number of observations
N number of particles

π(.) Importance density

w
(i)
t weight of ith particle in the tth state

w̃
(i)
t normalized weight of the ith particle in the tth state

N̂eff effective sample size
f(.) normal PDF function
p current MB in the considered erroneous slice
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(a) (b)

(c) (d)

Fig. 1 (a) The 14th erroneous frame from “Suzie” sequence. (b) The 14th frame is recon-
structed by Kalman filtering (c) The 54th erroneous frame from “Suzie” sequence. (d) The
54th frame is reconstructed by Kalman filtering. (Notice that it is shown in (d), the 54th
frame is reconstructed poorly since it has more nonuniform motion speed in different areas
of the frame.)
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Fig. 2 (a) MV diagram for the 14th frame of “Suzie” video sequence. The MVs are more
uniform than 54th frame, averagely. The objects’ motion speed are almost the same. (b)
MV diagram for 54th frame of “Suzie” video sequence. The MVs are very different from
each other. The speed and direction of MVs are alternated in different areas of this frame
extremely which leads to inaccuracy in MV recovery by Kalman filtering.
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Fig. 3 The PDFs of the “Carphone” sequence for both x and y elements of the corrupted
MVs are depicted when PLR=5% and QP=25. They show the non-Gaussian behavior,
clearly.
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Fig. 4 The PDFs of the “Suzie” sequence for both x and y elements of the corrupted MVs
are depicted when PLR=15% and QP=20. They show the non-Gaussian behavior, clearly.

22



1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Gaussian components

S
S

E

 

 
MV

x
MV

y

Fig. 5 This diagram shows the error values when the PDF is approximated by GMs with
various number of components. The “Carphone” sequence is tested with PLR=5% and
QP=25. It is obvious that when we increase the number of components, the SSE is decreased
dramatically.
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Fig. 6 This diagram shows the error values when the PDF is approximated by GMs with
various number of components. The “Suzie” sequence is tested with PLR=15% and QP=20.
It is obvious that when we increase the number of components, the SSE is decreased dra-
matically.
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Fig. 7 The discrete two-state Elliot-Gilbert channel model. If the transmission channel
were in the bad state, the data received in the decoder would be decoded incorrectly.
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The erroneous MBs
 are detected

Input: The erroneous frames

Finding the best substitution
for each erroneous MB by 

BMA method

Apply filtering

Reconstruct the frames

Output: The reconstructed sequence

Perform the proposed
 particle filtering method

Draw data from Set S 
and temporal adjacent MBs

Fig. 8 The summery of the proposed method in brief. The filtering methods are applied
for fine tuning after MV estimation which is recovered using the BMA method. The set S
is derived from (8).
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Table 3 Performance evaluation of the proposed algorithm versus other EC methods

Sequence Measurement DMVE BMA KF PF

PLR(%) 5 10 20 5 10 20 5 10 20 5 10 20
YPSNR(dB) 29.34 25.64 25.49 29.10 25.62 24.77 29.55 25.97 25.61 29.64 26.63 26.13

Stefan
TIME(s) 3.09 6.22 12.48 0.08 0.17 0.34 0.09 0.17 0.34 0.12 0.20 0.46

YPSNR(dB) 33.71 33.41 30.98 33.20 32.5 30.43 35.69 33.57 31.25 36.40 35.38 32.49
Foreman

TIME(s) 2.87 5.70 11.59 0.08 0.15 0.31 0.09 0.17 0.34 0.11 0.23 0.46

YPSNR(dB) 36.14 35.03 31.64 35.21 34.84 31.11 36.55 35.22 32.45 37.90 37.20 33.50
Tennis

TIME(s) 2.8 5.69 11.44 0.08 0.15 0.31 0.09 0.20 0.33 0.12 0.23 0.46

YPSNR(dB) 36.10 34.32 31.94 34.79 33.20 31.12 36.52 35.18 34.07 37.99 36.36 34.98
Carphone

TIME(s) 2.02 5.83 11.50 0.07 0.17 0.36 0.09 0.15 0.31 0.11 0.22 0.45
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Fig. 9 It illustrates the proposed method briefly. pth MB in the erroneous slice is chosen.
The observation is obtained for the erroneous MB using BMA. After initializing the particles,
the next state is predicted and particles are weighted according to the observation. Then
particles are resampled and the MV’s state is predicted. This method is applied for each
erroneous slice in each frame.
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Fig. 10 YPSNR versus frame number for “Foreman” sequence. This sequence has QCIF
resolution (176 × 144). QP is set to 22 and PLR is 15%.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 The 4th frame of the “Stefan” sequence in QCIF resolution:(a) error-free frame
(b) corrupted frame (c) concealed with DMVE (d) concealed with BMA (e) concealed with
KF (f) concealed with the proposed method (PF)
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(a) (b)

(c) (d)

(e) (f)

Fig. 12 The 2nd frame of the “Foreman” sequence in CIF resolution :(a) error-free frame
(b) corrupted frame (c) concealed with DMVE (d) concealed with BMA (e) concealed with
KF (f) concealed with the proposed method (PF)
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(a) (b)

(c) (d)

Fig. 13 The 10th frame of the “Stefan” sequence in QCIF resolution :(a) corrupted frame
(b) concealed with BMA (c) concealed with KF (d) concealed with the proposed method(PF)
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(a) (b)

(c) (d)

Fig. 14 The 7th frame of the “Foreman” sequence in QCIF resolution :(a) corrupted
frame (b) concealed with DMVE (c) concealed with KF (d) concealed with the proposed
method(PF)
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